Ramsey theorem for trees with successor operation

Jan Hubička
Department of Applied Mathematics
Charles University
Prague
Joint work with Martin Balko, Samuel Bruanfeld, Natasha Dobrinen, David Chodounský, Matěj
Konečný, Jaroslav Nešetřil, Noe de Rancourt, Stevo Todorcevic, Lluis Vena, Andy Zucker

Winter school, 2023, Hejnice

Topological dynamics

Structural Ramsey Theory

Topological dynamics

Structural Ramsey Theory

Topological dynamics

Big Ramsey Degrees of (\mathbb{Q}, \leq)

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)
The order of rationals (\mathbb{Q}, \leq) has finite big Ramsey degrees: for every $n \in \omega$ there exists $T(n) \in \omega$ such that whenever n-element subsets of \mathbb{Q} are finitely colored, there exists a copy of (\mathbb{Q}, \leq) in itself touching at most $T(n)$ many colors.

Big Ramsey Degrees of (\mathbb{Q}, \leq)

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (\mathbb{Q}, \leq) has finite big Ramsey degrees: for every $n \in \omega$ there exists $T(n) \in \omega$ such that whenever n-element subsets of \mathbb{Q} are finitely colored, there exists a copy of (\mathbb{Q}, \leq) in itself touching at most $T(n)$ many colors.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

Big Ramsey Degrees of (\mathbb{Q}, \leq)

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (\mathbb{Q}, \leq) has finite big Ramsey degrees: for every $n \in \omega$ there exists $T(n) \in \omega$ such that whenever n-element subsets of \mathbb{Q} are finitely colored, there exists a copy of (\mathbb{Q}, \leq) in itself touching at most $T(n)$ many colors.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

$$
\begin{gathered}
T(1)=1, T(2)=2, T(3)=16, T(4)=272, \\
T(5)=7936, T(6)=353792, T(7)=22368256
\end{gathered}
$$

Big Ramsey Degrees of (\mathbb{Q}, \leq)

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (\mathbb{Q}, \leq) has finite big Ramsey degrees: for every $n \in \omega$ there exists $T(n) \in \omega$ such that whenever n-element subsets of \mathbb{Q} are finitely colored, there exists a copy of (\mathbb{Q}, \leq) in itself touching at most $T(n)$ many colors.

$$
T(n)=\tan ^{(2 n-1)}(0)
$$

$\tan ^{(2 n-1)}(0)$ is the $(2 n-1)^{\text {st }}$ derivative of the tangent evaluated at 0 .

$$
T(1)=1, T(2)=2, T(3)=16, T(4)=272,
$$

$$
T(5)=7936, T(6)=353792, T(7)=22368256
$$

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

x_{0}

Rich colouring of \mathbb{Q}

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Rich colouring of \mathbb{Q}

Colour of k-tuple $=$ shape of meet closure in the tree

Proof techniques in small Ramsey world are different

Proof techniques in small Ramsey world are different

Proof techniques in small Ramsey world are different

Proof techniques in small Ramsey world are different

Proof techniques in small Ramsey world are different

Trees (terminology)

- A tree is a (possibly empty) partially ordered set $\left(T,<_{T}\right)$ such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.

$\left(2^{<7}, \sqsubseteq\right)$

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.

Trees (terminology)

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set
$\{s \in T: s<T t\}$.

$$
\left(2^{<7}, \sqsubseteq\right)
$$

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\{s \in T: s<T t\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\left\{s \in T: s<_{T} t\right\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.
- For $s, t \in T$, the meet $s \wedge_{T} t$ of s and t is the largest $s^{\prime} \in T$ such that $s^{\prime} \leq_{T} s$ and $s^{\prime} \leq_{T} t$.

Trees (terminology)

$\left(2^{<7}, \sqsubseteq\right)$

- A tree is a (possibly empty) partially ordered set ($T,<_{T}$) such that, for every $t \in T$, the set $\left\{s \in T: s<_{T} t\right\}$ is finite and linearly ordered by $<_{T}$. All trees considered are finite or countable.
- Tree is rooted, that is, they have a unique minimal element called the root of the tree.
- An element $t \in T$ of a tree T is called a node of T and its level, denoted by $\ell_{T}(t)$, is the size of the set $\{s \in T: s<T t\}$.
- We use $T(n)$ to denote the set of all nodes of T at level n. Similarly $T(<n)$ denotes an initial segment of the tree consisting of all nodes of level less than n.
- For $s, t \in T$, the meet $s \wedge_{T} t$ of s and t is the largest $s^{\prime} \in T$ such that $s^{\prime} \leq_{T} s$ and $s^{\prime} \leq_{T} t$.
- The height of T, denoted by $h(T)$, is the minimal natural number h such that $T(h)=\emptyset$. If there is no such number h, then we say that the height of T is ω.

Subtrees and strong subtrees

- A subtree of a tree T is a subset $S \subseteq T$ viewed as a tree equipped with the induced partial ordering.
- Given a tree T and nodes $s, t \in T$ we say that s is a successor of t in T if $t \leq_{T} s$.
- The node s is an immediate successor of t in T if $t<_{T} S$ and there is no $s^{\prime} \in T$ such that $t<_{T} s^{\prime}<_{T} S$.
- Node with no successors is leaf.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.

Strong subtree

Definition

Let T be rooted tree. Nonempty $\mathbf{S} \subseteq \mathbf{T}$ is a strong subtree of T of height $n \in \omega+1$ if:
(1) S is closed for meets. (In particular, S is rooted.)
(2) For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n=\omega$ then every $a \in S$.)
(3) S is level preserving: Every level of S is a subset of some level of T.
(4) S has height n.

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is (product version of) $k=1$ (Halpern-Läuchli Theorem, 1966)

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is (product version of) $k=1$ (Halpern-Läuchli Theorem, 1966)

Ramsey-type theorem for strong subtrees

Let T be a tree and $k \in \omega+1$. We use $\operatorname{Str}_{k}(T)$ to denote the set of all strong subtrees of T of height k.

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every $k \in \omega$ and every finite colouring of $\operatorname{Str}_{k}(T)$ there is $S \in \operatorname{Str}_{\omega}(T)$ such that the set $\operatorname{Str}_{k}(S)$ is monochromatic.

The difficult case to prove is (product version of) $k=1$ (Halpern-Läuchli Theorem, 1966)

Notice that for regularly branching tree the strong subtree is isomorphic to the original tree.

Some more recent results on big Ramsey degrees

(1) Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
(2) Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces.
(3) Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense local order.

Some more recent results on big Ramsey degrees

(1) Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
(2) Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces.
(3) Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense local order.
4 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
(5) Dobrinen (2023): Big Ramsey degrees of universal homogeneous K_{k}-free graphs are finite for every $k \geq 3$.
6 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many forbidden substructures are finite.

Some more recent results on big Ramsey degrees

(1) Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
(2) Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces.
(3) Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense local order.
4 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
(5) Dobrinen (2023): Big Ramsey degrees of universal homogeneous K_{k}-free graphs are finite for every $k \geq 3$.
6 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many forbidden substructures are finite.
7 Balko, Chodounský, H., Konečný, Vena (2022): Big Ramsey degrees of 3-uniform hypergraphs are finite.
8 H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.

Some more recent results on big Ramsey degrees

(1) Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
(2) Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces.
(3) Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense local order.
4 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
(5) Dobrinen (2023): Big Ramsey degrees of universal homogeneous K_{k}-free graphs are finite for every $k \geq 3$.
6 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many forbidden substructures are finite.
7 Balko, Chodounský, H., Konečný, Vena (2022): Big Ramsey degrees of 3-uniform hypergraphs are finite.
8 H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.
(9) Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Vena, Zucker (2021): Big Ramsey degrees of structures described by induced cycles are finite.
(10) Balko, Chodounský, Dobrinen, H., Konečný, Vena, Zucker (2021+): Characterisation of big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many constraints.

Some more recent results on big Ramsey degrees

(1) Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
(2) Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric spaces.
(3) Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of homogeneous dense local order.
(4) Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
(5) Dobrinen (2023): Big Ramsey degrees of universal homogeneous K_{k}-free graphs are finite for every $k \geq 3$.
6 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many forbidden substructures are finite.
7 Balko, Chodounský, H., Konečný, Vena (2022): Big Ramsey degrees of 3-uniform hypergraphs are finite.
8 H. (2020+): Big Ramsey degrees of partial orders and metric spaces are finite.
(9) Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Vena, Zucker (2021): Big Ramsey degrees of structures described by induced cycles are finite.
(10) Balko, Chodounský, Dobrinen, H., Konečný, Vena, Zucker (2021+): Characterisation of big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary language with finitely many constraints.
(11) Bice, de Rancourt, H., Konečný: metric big Ramsey degrees of ℓ_{∞} and the Urysohn sphere, (2023+).

Big Ramsey degrees

Big Ramsey degres by proof techniques

Ramsey's Theorem
ω, Unary languages Ultrametric spaces

Big Ramsey degres by proof techniques

Milliken's Tree Theorem

Order of rationals
Random graph
Ramsey's Theorem
ω, Unary languages Ultrametric spaces Λ-ultrametric

Simple structures in finite binary laguages

Binary structures with unaries
(bipartite graphs)

Big Ramsey degres by proof techniques

Triangle-free graphs

Milliken's Tree Theorem

Order of rationals

Coding
trees and forcing

Free amalgamation in finite binary laguages finitely many cliques

	Random graph	K_{k}-free graphs, $k>3$
Ramsey's Theorem ω, Unary languages Ultrametric spaces ^-ultrametric	Simple structures in finite binary laguages	SDAP

Big Ramsey degres by proof techniques

Triangle-free graphs

Milliken's Tree Theorem
Order of rationals
Random graph
Ramsey's Theorem
ω, Unary languages Ultrametric spaces
Λ-ultrametric

Coding

trees and

 forcingFree amalgamation in finite binary laguages finitely many cliques

Binary structures
with unaries
(bipartite graphs)

Product Milliken Tree Theorem

Random structures
in finite language

Big Ramsey degres by proof techniques

Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (\mathcal{S}-tree)

An \mathcal{S}-tree is a quadruple ($T, \preceq, \Sigma, \mathcal{S}$) where (T, \preceq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function
$\mathcal{S}: T \times T^{<\omega} \times \Sigma \rightarrow T$ called the successor operation satisfying the following three axioms:

Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (\mathcal{S}-tree)

An \mathcal{S}-tree is a quadruple ($T, \preceq, \Sigma, \mathcal{S}$) where (T, \preceq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function
$\mathcal{S}: T \times T^{<\omega} \times \Sigma \rightarrow T$ called the successor operation satisfying the following three axioms:
(1) If $\mathcal{S}(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $\mathcal{S}(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a)-1$.

Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (\mathcal{S}-tree)

An \mathcal{S}-tree is a quadruple ($T, \preceq, \Sigma, \mathcal{S}$) where (T, \preceq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function
$\mathcal{S}: T \times T^{<\omega} \times \Sigma \rightarrow T$ called the successor operation satisfying the following three axioms:
(1) If $\mathcal{S}(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $\mathcal{S}(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a)-1$.
(2) For every node $a \in T$ and its immediate successor b, there exist $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$ such that $b=\mathcal{S}(a, \bar{p}, c)$.

Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (\mathcal{S}-tree)

An \mathcal{S}-tree is a quadruple ($T, \preceq, \Sigma, \mathcal{S}$) where (T, \preceq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function $\mathcal{S}: T \times T^{<\omega} \times \Sigma \rightarrow T$ called the successor operation satisfying the following three axioms:
(1) If $\mathcal{S}(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $\mathcal{S}(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a)-1$.
(2) For every node $a \in T$ and its immediate successor b, there exist $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$ such that $b=\mathcal{S}(a, \bar{p}, c)$.

Example: a binary tree

Consider \mathcal{S}-tree is ($2^{<\omega}, \sqsubseteq,\{0,1\}, \mathcal{S}$).
\mathcal{S} is defined only for empty parameters \bar{p} by concatenation: $\mathcal{S}(a, c)=a^{\wedge} c$.

$$
\mathcal{S}(\mathcal{S}(\mathcal{S}(\mathcal{S}(\mathcal{S}((), 0), 1), 0), 1), 1)=01011
$$

Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (\mathcal{S}-tree)

An \mathcal{S}-tree is a quadruple ($T, \preceq, \Sigma, \mathcal{S}$) where (T, \preceq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function
$\mathcal{S}: T \times T^{<\omega} \times \Sigma \rightarrow T$ called the successor operation satisfying the following three axioms:
(1) If $\mathcal{S}(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $\mathcal{S}(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a)-1$.
(2) For every node $a \in T$ and its immediate successor b, there exist $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$ such that $b=\mathcal{S}(a, \bar{p}, c)$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Shape-preserving functions

Definition (Shape-preserving functions)

Let ($T, \preceq, \Sigma, \mathcal{S}$) be an \mathcal{S}-tree. We call an injection $F: T \rightarrow T$ shape-preserving if
(1) F is level preserving:

$$
\left(\forall_{a, b \in T}\right):(\ell(a)=\ell(b)) \Longrightarrow(\ell(F(a))=\ell(F(b)))
$$

(2) F is weakly \mathcal{S}-preserving:

$$
\left(\forall_{a \in T, \bar{p} \in T<\omega, c \in \Sigma}\right): \mathcal{S}(a, \bar{p}, c) \text { is defined } \Longrightarrow \mathcal{S}(F(a), F(\bar{p}), c) \preceq F(\mathcal{S}(a, \bar{p}, c)) .
$$

(3) For every $a \in T(0)$ it holds that $a \preceq F(a)$.

Given $S \subseteq T$, we also call a function $f: S \rightarrow T$ shape-preserving if it extends to a shape-preserving function $F: T \rightarrow T$.

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

$$
\tilde{F}(0)=0, \tilde{F}(1)=2: F \text { skips levels } 1 \text { and } 2 .
$$

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

Definition ($(\mathcal{S}, \mathcal{M})$-tree)

Given an \mathcal{S}-tree ($T, \preceq, \Sigma, \mathcal{S}$) and a monoid \mathcal{M} of some shape-preserving functions $T \rightarrow T$, we call ($T, \preceq, \Sigma, \mathcal{S}, \mathcal{M}$) an (\mathcal{S}, \mathcal{M})-tree if the following three conditions are satisfied:

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

Definition ($(\mathcal{S}, \mathcal{M})$-tree)

Given an \mathcal{S}-tree ($T, \preceq, \Sigma, \mathcal{S}$) and a monoid \mathcal{M} of some shape-preserving functions $T \rightarrow T$, we call $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ an $(\mathcal{S}, \mathcal{M})$-tree if the following three conditions are satisfied:
(1) \mathcal{M} forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

Definition ($(\mathcal{S}, \mathcal{M})$-tree)

Given an \mathcal{S}-tree ($T, \preceq, \Sigma, \mathcal{S}$) and a monoid \mathcal{M} of some shape-preserving functions $T \rightarrow T$, we call ($T, \preceq, \Sigma, \mathcal{S}, \mathcal{M}$) an $(\mathcal{S}, \mathcal{M})$-tree if the following three conditions are satisfied:
(1) \mathcal{M} forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
(2) \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n)-1$ there exist $F_{1}, F_{2} \in \mathcal{M}$ such that F_{2} skips only level $\tilde{F}(n)-1$ and $\left.F_{2} \circ F_{1}\right|_{T(\leq n)}=F \upharpoonright_{T(\leq n)}$.

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

Definition ($(\mathcal{S}, \mathcal{M})$-tree)

Given an \mathcal{S}-tree ($T, \preceq, \Sigma, \mathcal{S}$) and a monoid \mathcal{M} of some shape-preserving functions $T \rightarrow T$, we call $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ an $(\mathcal{S}, \mathcal{M})$-tree if the following three conditions are satisfied:
(1) \mathcal{M} forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
(2) \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n)-1$ there exist $F_{1}, F_{2} \in \mathcal{M}$ such that F_{2} skips only level $\tilde{F}(n)-1$ and $F_{2} \circ F_{1} \upharpoonright_{T(\leq n)}=F \upharpoonright_{T(\leq n)}$.

(3) \mathcal{M} is closed for duplication: For all n and m with $n<m \in \omega$, there exists a function $F_{m}^{n} \in \mathcal{M}$ skipping only level m such that for every $a \in T(n), b \in T(m), \bar{p} \in T^{<\omega}$ and $c \in \Sigma$, where $\mathcal{S}(a, \bar{p}, c)$ is defined and $\mathcal{S}(a, \bar{p}, c) \preceq b$, we have $F_{m}^{n}(b)=\mathcal{S}(b, \bar{p}, c)$.

Monoids of shape-preserving functions

For a level-preserving function $F: S \rightarrow T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \rightarrow \omega$ defined by $\tilde{F}(n)=\ell(F(a))$ for some $a \in S$ with $\ell(a)=n$.
We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega]=\omega \backslash\{m\}$.

Definition ($(\mathcal{S}, \mathcal{M})$-tree)

Given an \mathcal{S}-tree ($T, \preceq, \Sigma, \mathcal{S}$) and a monoid \mathcal{M} of some shape-preserving functions $T \rightarrow T$, we call $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ an $(\mathcal{S}, \mathcal{M})$-tree if the following three conditions are satisfied:
(1) \mathcal{M} forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
(2) \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n)-1$ there exist $F_{1}, F_{2} \in \mathcal{M}$ such that F_{2} skips only level $\tilde{F}(n)-1$ and $F_{2} \circ F_{1} \upharpoonright_{T(\leq n)}=F \upharpoonright_{T(\leq n)}$.

(3) \mathcal{M} is closed for duplication: For all n and m with $n<m \in \omega$, there exists a function $F_{m}^{n} \in \mathcal{M}$ skipping only level m such that for every $a \in T(n), b \in T(m), \bar{p} \in T^{<\omega}$ and $c \in \Sigma$, where $\mathcal{S}(a, \bar{p}, c)$ is defined and $\mathcal{S}(a, \bar{p}, c) \preceq b$, we have $F_{m}^{n}(b)=\mathcal{S}(b, \bar{p}, c)$.

Ramsey theorem for trees with successor operation

Put $\mathcal{M}^{n}=\left\{F \in \mathcal{M}: F \upharpoonright_{T(<n)}\right.$ is identity $\}, \mathcal{A} \mathcal{M}_{k}^{n}=\left\{F \upharpoonright_{T(<n+k)}: F \in \mathcal{M}^{n}\right\}$.
Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)
Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of $\mathcal{A} \mathcal{M}_{k}^{n}$, there exists $F \in \mathcal{M}^{n}$ such that χ is constant when restricted to $\left\{F \circ g: g \in \mathcal{A} \mathcal{M}_{k}^{n}\right\}$.

Ramsey theorem for trees with successor operation

Put $\mathcal{M}^{n}=\left\{F \in \mathcal{M}: F \upharpoonright_{T(<n)}\right.$ is identity $\}, \mathcal{A} \mathcal{M}_{k}^{n}=\left\{\left.F\right|_{\left.T_{(<n+k)}\right)}: F \in \mathcal{M}^{n}\right\}$.
Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)
Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of $\mathcal{A} \mathcal{M}_{k}^{n}$, there exists $F \in \mathcal{M}^{n}$ such that χ is constant when restricted to $\left\{F \circ g: g \in \mathcal{A} \mathcal{M}_{k}^{n}\right\}$.

Examples

Consider \mathcal{S}-tree ($\Sigma^{<\omega}, \sqsubseteq, \Sigma, \mathcal{S}$) for some finite alphabet Σ.
(1) If $|\Sigma|=1$ we obtain Ramsey theorem.

Ramsey theorem for trees with successor operation

Put $\mathcal{M}^{n}=\left\{F \in \mathcal{M}: F \upharpoonright_{T(<n)}\right.$ is identity $\}, \mathcal{A} \mathcal{M}_{k}^{n}=\left\{\left.F\right|_{\left.T_{(<n+k)}\right)}: F \in \mathcal{M}^{n}\right\}$.
Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)
Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of $\mathcal{A} \mathcal{M}_{k}^{n}$, there exists $F \in \mathcal{M}^{n}$ such that χ is constant when restricted to $\left\{F \circ g: g \in \mathcal{A} \mathcal{M}_{k}^{n}\right\}$.

Examples

Consider \mathcal{S}-tree ($\Sigma^{<\omega}, \check{ }, \Sigma, \mathcal{S}$) for some finite alphabet Σ.
(1) If $|\Sigma|=1$ we obtain Ramsey theorem.
(2) If $|\Sigma|>1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.

Ramsey theorem for trees with successor operation

Put $\mathcal{M}^{n}=\left\{F \in \mathcal{M}: F \upharpoonright_{T(<n)}\right.$ is identity $\}, \mathcal{A} \mathcal{M}_{k}^{n}=\left\{F \upharpoonright_{\left.T_{(<n+k)}\right)}: F \in \mathcal{M}^{n}\right\}$.
Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)
Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of $\mathcal{A} \mathcal{M}_{k}^{n}$, there exists $F \in \mathcal{M}^{n}$ such that χ is constant when restricted to $\left\{F \circ g: g \in \mathcal{A} \mathcal{M}_{k}^{n}\right\}$.

Examples

Consider \mathcal{S}-tree ($\Sigma^{<\omega}, \check{ }, \Sigma, \mathcal{S}$) for some finite alphabet Σ.
(1) If $|\Sigma|=1$ we obtain Ramsey theorem.
(2) If $|\Sigma|>1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.
(3) If $|\Sigma|>1$ and \mathcal{M} is generated only by duplication functions we obtain dual Ramsey theorem.

Ramsey theorem for trees with successor operation

Put $\mathcal{M}^{n}=\left\{F \in \mathcal{M}: F \upharpoonright_{T(<n)}\right.$ is identity $\}, \mathcal{A} \mathcal{M}_{k}^{n}=\left\{F \upharpoonright_{\left.T_{(<n+k)}\right)}: F \in \mathcal{M}^{n}\right\}$.
Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)
Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of $\mathcal{A} \mathcal{M}_{k}^{n}$, there exists $F \in \mathcal{M}^{n}$ such that χ is constant when restricted to $\left\{F \circ g: g \in \mathcal{A} \mathcal{M}_{k}^{n}\right\}$.

Examples

Consider \mathcal{S}-tree ($\Sigma^{<\omega}, \check{ }, \Sigma, \mathcal{S}$) for some finite alphabet Σ.
(1) If $|\Sigma|=1$ we obtain Ramsey theorem.
(2) If $|\Sigma|>1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.
(3) If $|\Sigma|>1$ and \mathcal{M} is generated only by duplication functions we obtain dual Ramsey theorem.
(4) If $|\Sigma|>1$ and \mathcal{M} is generated only by duplication and "constant" functions we obtain Graham-Rothschild theorem theorem.

Ellentuck topology on $(\mathcal{S}, \mathcal{M})$-trees

Recall that a subset \mathcal{X} of a topological space is
(1) nowhere dense if every non-empty open set contains a non-empty open subset that avoids \mathcal{X}.
(2) meager if is the union of countably many nowhere dense sets,
(3) has the Baire property if it can be written as the symmetric difference of an open set and a meager set.
Put $\mathcal{A M}=\left\{F \upharpoonright_{T(<n)}: F \in \mathcal{M}, n \in \omega\right\}$.

Definition (Ellentuck topological space \mathcal{M})

Given an $(\mathcal{S}, \mathcal{M})$-tree $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ we equip \mathcal{M} with the Ellentuck topology given by the following basic open sets:

$$
[f, F]=\left\{F \circ F^{\prime}: F^{\prime} \in \mathcal{M} \text { and } F \circ F^{\prime} \text { extends } f\right\}
$$

for every $f \in \mathcal{A M}$ and $F \in \mathcal{M}$.

Topological Ramsey theorem for trees with successor operation

Given a shape-preserving function $F \in \mathcal{M}$ and $f: T(\leq n) \rightarrow T$ such that $f \in \mathcal{A M}$ we define $\operatorname{depth}_{F}(f)=\tilde{g}(n)$ for $g \in \mathcal{A M}$ satisfying $F \circ g=f$. We set $\operatorname{depth}_{F}(f)=\omega$ if there is no such g.

Definition

Let \mathcal{X} be a subset of \mathcal{M}.
(1) We call \mathcal{X} Ramsey if for every non-empty basic set $[f, F]$ there is $F^{\prime} \in\left[F{\left.\prod_{\operatorname{deph}_{F}}(f), F\right] \text { such that }}^{\text {a }}\right.$ either $\left[f, F^{\prime}\right] \subseteq \mathcal{X}$ or $\left[f, F^{\prime}\right] \cap \mathcal{X}=\emptyset$.
(2) We call \mathcal{X} Ramsey null if for every $[f, F] \neq \emptyset$ we can find $F^{\prime} \in\left[F \upharpoonright_{\text {depph }_{F}(f)}, F\right]$ s. t. $\left[f, F^{\prime}\right] \cap \mathcal{X}=\emptyset$.

Theorem (Ellentuck theorem for shape-preserving functions)

Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree and consider \mathcal{M} with the Ellentuck topology. Then every property of Baire subset of \mathcal{M} is Ramsey and every meager subset is Ramsey null.

Examples

Consider \mathcal{S}-tree $\left(\Sigma^{<\omega}, \sqsubseteq, \Sigma, \mathcal{S}\right)$ for some finite alphabet Σ.
(1) If $|\Sigma|=0$ we obtain Ellentuck theorem.

Topological Ramsey theorem for trees with successor operation

Given a shape-preserving function $F \in \mathcal{M}$ and $f: T(\leq n) \rightarrow T$ such that $f \in \mathcal{A M}$ we define $\operatorname{depth}_{F}(f)=\tilde{g}(n)$ for $g \in \mathcal{A M}$ satisfying $F \circ g=f$. We set $\operatorname{depth}_{F}(f)=\omega$ if there is no such g.

Definition

Let \mathcal{X} be a subset of \mathcal{M}.
(1) We call \mathcal{X} Ramsey if for every non-empty basic set $[f, F]$ there is $F^{\prime} \in\left[F{\left.\prod_{\operatorname{deph}_{F}}(f), F\right] \text { such that }}^{\text {a }}\right.$ either $\left[f, F^{\prime}\right] \subseteq \mathcal{X}$ or $\left[f, F^{\prime}\right] \cap \mathcal{X}=\emptyset$.
(2) We call \mathcal{X} Ramsey null if for every $[f, F] \neq \emptyset$ we can find $F^{\prime} \in\left[F \upharpoonright_{\text {depph }_{F}(f)}, F\right]$ s. t. $\left[f, F^{\prime}\right] \cap \mathcal{X}=\emptyset$.

Theorem (Ellentuck theorem for shape-preserving functions)

Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree and consider \mathcal{M} with the Ellentuck topology. Then every property of Baire subset of \mathcal{M} is Ramsey and every meager subset is Ramsey null.

Examples

Consider \mathcal{S}-tree $\left(\Sigma^{<\omega}, \sqsubseteq, \Sigma, \mathcal{S}\right)$ for some finite alphabet Σ.
(1) If $|\Sigma|=0$ we obtain Ellentuck theorem.
(2) If $|\Sigma|>1$ and \mathcal{M} consists of all shape-preserving functions \Longrightarrow Milliken theorem.

Topological Ramsey theorem for trees with successor operation

Given a shape-preserving function $F \in \mathcal{M}$ and $f: T(\leq n) \rightarrow T$ such that $f \in \mathcal{A M}$ we define $\operatorname{depth}_{F}(f)=\tilde{g}(n)$ for $g \in \mathcal{A M}$ satisfying $F \circ g=f$. We set $\operatorname{depth}_{F}(f)=\omega$ if there is no such g.

Definition

Let \mathcal{X} be a subset of \mathcal{M}.
(1) We call \mathcal{X} Ramsey if for every non-empty basic set $[f, F]$ there is $F^{\prime} \in\left[F\left\lceil_{\operatorname{depth}_{F}}(f), F\right]\right.$ such that either $\left[f, F^{\prime}\right] \subseteq \mathcal{X}$ or $\left[f, F^{\prime}\right] \cap \mathcal{X}=\emptyset$.

Theorem (Ellentuck theorem for shape-preserving functions)

Let $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$-tree and consider \mathcal{M} with the Ellentuck topology. Then every property of Baire subset of \mathcal{M} is Ramsey and every meager subset is Ramsey null.

Examples

Consider \mathcal{S}-tree $\left(\Sigma^{<\omega}, \sqsubseteq, \Sigma, \mathcal{S}\right)$ for some finite alphabet Σ.
(1) If $|\Sigma|=0$ we obtain Ellentuck theorem.
(2) If $|\Sigma|>1$ and \mathcal{M} consists of all shape-preserving functions \Longrightarrow Milliken theorem.
(3) If $|\Sigma|>1$ and \mathcal{M} is generated only by duplication functions \Longrightarrow Carlson-Simpson theorem.

Proof outline

(1) 1-dimensional pigeonhole is proved using Hales-Jewett theorem (duplication is important here).

Proof outline

(1) 1-dimensional pigeonhole is proved using Hales-Jewett theorem (duplication is important here).
(2) Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger notion of "fat subtrees".

Proof outline

(1) 1-dimensional pigeonhole is proved using Hales-Jewett theorem (duplication is important here).
(2) Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger notion of "fat subtrees".
(3) Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.
(4) Topological Ramsey theorem for trees with successor operation follows as a consequence.

Proof outline

(1) 1-dimensional pigeonhole is proved using Hales-Jewett theorem (duplication is important here).
(2) Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger notion of "fat subtrees".
(3) Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.
(4) Topological Ramsey theorem for trees with successor operation follows as a consequence.

We obtain an interesting example of Ramsey space where Todorčević A3.2 axiom is not satisfied.

Applications to Big Ramsey degrees

Applications to Big Ramsey degrees

Applications to Big Ramsey degrees

Applications to small Ramsey degrees

Applications to small Ramsey degrees

Abramson-Harrington theorem

Theorem (Nešetřil 1977, Abramson-Harrington 1978)

Let L be a relational language and \mathbf{A}, \mathbf{B} finite ordered L-structures. Then there exists finite ordered L-structure \mathbf{C} satisfying $\mathbf{C} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$.

Proof, step 1: associate vertices of structure B with words.
(1) Fix \mathbf{A} and \mathbf{B}. WLOG assume that $B=n=|B|$ and $\leq_{\mathbf{B}}$ is the natural ordering of n.

Abramson-Harrington theorem

Theorem (Nešetřil 1977, Abramson-Harrington 1978)

Let L be a relational language and \mathbf{A}, \mathbf{B} finite ordered L-structures. Then there exists finite ordered L-structure \mathbf{C} satisfying $\mathbf{C} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$.

Proof, step 1: associate vertices of structure B with words.
(1) Fix \mathbf{A} and \mathbf{B}. WLOG assume that $B=n=|B|$ and $\leq_{\mathbf{B}}$ is the natural ordering of n.
(2) Given two substructures \mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$ of \mathbf{B} we put $\mathbf{B}^{\prime} \prec \mathbf{B}^{\prime \prime}$ if either $\left|\mathbf{B}^{\prime}\right|<\left|\mathbf{B}^{\prime \prime}\right|$ or $\left|\mathbf{B}^{\prime}\right|=\left|\mathbf{B}^{\prime \prime}\right|$ and B^{\prime} is lexicographically before $B^{\prime \prime}$ (in the order of vertices of \mathbf{B}).

Abramson-Harrington theorem

Theorem (Nešetřil 1977, Abramson-Harrington 1978)

Let L be a relational language and \mathbf{A}, \mathbf{B} finite ordered L-structures. Then there exists finite ordered L-structure \mathbf{C} satisfying $\mathbf{C} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$.

Proof, step 1: associate vertices of structure B with words.
(1) Fix A and \mathbf{B}. WLOG assume that $B=n=|B|$ and $\leq_{\mathbf{B}}$ is the natural ordering of n.
(2) Given two substructures \mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$ of \mathbf{B} we put $\mathbf{B}^{\prime} \prec \mathbf{B}^{\prime \prime}$ if either $\left|\mathbf{B}^{\prime}\right|<\left|\mathbf{B}^{\prime \prime}\right|$ or $\left|\mathbf{B}^{\prime}\right|=\left|\mathbf{B}^{\prime \prime}\right|$ and B^{\prime} is lexicographically before $B^{\prime \prime}$ (in the order of vertices of \mathbf{B}).
(3) Put $p=2^{n}-1$ and enumerate all non-empty substructures of \mathbf{B} as $\mathbf{B}^{0}, \mathbf{B}^{1}, \ldots, \mathbf{B}^{p-1}$ in the increasing order (given by \preceq). For each $i<p$

Abramson-Harrington theorem

Theorem (Nešetřil 1977, Abramson-Harrington 1978)

Let L be a relational language and \mathbf{A}, \mathbf{B} finite ordered L-structures. Then there exists finite ordered L-structure \mathbf{C} satisfying $\mathbf{C} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$.

Proof, step 1: associate vertices of structure B with words.

(1) Fix \mathbf{A} and \mathbf{B}. WLOG assume that $B=n=|B|$ and $\leq_{\mathbf{B}}$ is the natural ordering of n.

2 Given two substructures \mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$ of \mathbf{B} we put $\mathbf{B}^{\prime} \prec \mathbf{B}^{\prime \prime}$ if either $\left|\mathbf{B}^{\prime}\right|<\left|\mathbf{B}^{\prime \prime}\right|$ or $\left|\mathbf{B}^{\prime}\right|=\left|\mathbf{B}^{\prime \prime}\right|$ and B^{\prime} is lexicographically before $B^{\prime \prime}$ (in the order of vertices of \mathbf{B}).
(3) Put $p=2^{n}-1$ and enumerate all non-empty substructures of \mathbf{B} as $\mathbf{B}^{0}, \mathbf{B}^{1}, \ldots, \mathbf{B}^{p-1}$ in the increasing order (given by \preceq). For each $i<p$
4. For each $i<N$ find lexicographically first substructure \mathbf{D}^{i} isomorphic to \mathbf{B}^{i} and denote by f^{i} the unique isomorphism $\mathbf{B}^{i} \rightarrow \mathbf{D}^{i}$.

$$
\begin{aligned}
& \varphi(v)_{i}=\left\{\begin{array}{ll}
-1 & \text { if } v \notin B^{i} \\
f^{i}(v) & \text { if } v \in B^{i}
\end{array} \text { for every } v \in B \text { and } i<p .\right. \\
& \mathbf{B}\left\{\begin{array}{ll}
0 & \varphi(0)
\end{array}=\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & \varphi(1) & = & n & n & 0 & 0 \\
n & n & 0 \\
2 & \varphi(2) & = & n & n & 1 & n \\
0 & 0 & 1 \\
0 & n & 0 & n & 2 & 1 & 2
\end{array}\right.
\end{aligned}
$$

Abramson-Harrington theorem

			0	1	2	3	4	5		6
	- 0	$\varphi(0)=$	0	n	n	0	0			0
	B 1	$\varphi(1)=$				1				1
	- 2	$\varphi(2)=$			0	n	2			2

Proof, step 2: structure \mathbf{C}_{ℓ} on Σ^{ℓ}.
Consider regularly branching tree $\left(\Sigma^{<\omega}, \sqsubseteq\right)$ with $\Sigma=B \cup\{-1\}$.

Abramson-Harrington theorem

			0	1	2	3	4	5	
	- 0	$\varphi(0)=$	0	n	n	0	0		
	B 1	$\varphi(1)=$	n	0	n	1	n		
	- 2	$\varphi(2)=$	n	n	0	n	2		

Proof, step 2: structure \mathbf{C}_{ℓ} on Σ^{ℓ}.
Consider regularly branching tree ($\Sigma^{<\omega}, \sqsubseteq$) with $\Sigma=B \cup\{-1\}$.
Given $k, \ell \in \omega$, and a tuple $\bar{w}=\left(w^{0}, w^{1}, \ldots, w^{k-1}\right)$ of elements of Σ^{ℓ}
(1) we say that \bar{w} decides a structure on level $i<\ell$ if $0 \leq w_{i}^{0}<w_{i}^{1}<\cdots<w_{i}^{k-1}$ and i is a minimal with this property.

Abramson-Harrington theorem

			0	1	2	3	4			6
	- 0	$\varphi(0)=$	0	n	n	0	0			0
	B 1	$\varphi(1)=$		0	n	1	n			1
	- 2	$\varphi(2)=$		n	0	n	2			2

Proof, step 2: structure \mathbf{C}_{ℓ} on Σ^{ℓ}.
Consider regularly branching tree ($\Sigma^{<\omega}, \sqsubseteq$) with $\Sigma=B \cup\{-1\}$.
Given $k, \ell \in \omega$, and a tuple $\bar{w}=\left(w^{0}, w^{1}, \ldots, w^{k-1}\right)$ of elements of Σ^{ℓ}
(1) we say that \bar{w} decides a structure on level $i<\ell$ if $0 \leq w_{i}^{0}<w_{i}^{1}<\cdots<w_{i}^{k-1}$ and i is a minimal with this property.
(2) we say that \bar{w} become incompatible on level $i^{\prime}<\ell$ if either
(1) $k=2$ and $w_{i^{\prime}}^{0} \geq w_{i^{\prime}}^{1} \geq 0$,
(2) $0 \leq w_{i^{\prime}}^{0}<w_{i^{\prime}}^{1}<\cdots<w_{i^{\prime}}^{k-1}$ however there exists $i<i^{\prime}$ such that \bar{w} decides structure on level i and $B \upharpoonright_{\left\{w_{i}^{0}, w_{i}^{1}, \ldots, w_{i}^{k-1}\right\}}$ is not isomorphic to $B \upharpoonright_{\left\{w_{i}^{0}, w_{i}^{1}, \ldots, w_{i}^{k-1}\right\}}$.

Abramson-Harrington theorem

B $\left\{\begin{array}{ll}0 & \varphi(0)\end{array} \begin{array}{llllllll}0 & = & 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & \varphi(1) & = & n & n & 0 & 0 & n \\ 0 \\ 2 & \varphi(2) & = & n & 0 & n & 1 & n \\ & 0 & n & 0 & n & 2 & 1 & 2\end{array}\right.$

Proof, step 2: structure \mathbf{C}_{ℓ} on Σ^{ℓ}.
Consider regularly branching tree ($\Sigma^{<\omega}, \sqsubseteq$) with $\Sigma=B \cup\{-1\}$.
Given $k, \ell \in \omega$, and a tuple $\bar{w}=\left(w^{0}, w^{1}, \ldots, w^{k-1}\right)$ of elements of Σ^{ℓ}
(1) we say that \bar{w} decides a structure on level $i<\ell$ if $0 \leq w_{i}^{0}<w_{i}^{1}<\cdots<w_{i}^{k-1}$ and i is a minimal with this property.
(2) we say that \bar{w} become incompatible on level $i^{\prime}<\ell$ if either
(1) $k=2$ and $w_{i^{\prime}}^{0} \geq w_{i^{\prime}}^{1} \geq 0$,
(2) $0 \leq w_{i^{\prime}}^{0}<w_{i^{\prime}}^{1}<\cdots<w_{i^{\prime}}^{k-1}$ however there exists $i<i^{\prime}$ such that \bar{w} decides structure on level i and $B \upharpoonright_{\left\{w_{i}^{0}, w_{i}^{1}, \ldots, w_{i}^{k-1}\right\}}$ is not isomorphic to $B \upharpoonright_{\left\{w_{i}^{0}, w_{i}^{1}, \ldots, w_{i}^{k-1}\right\}}$.
For every $\ell \in \omega$ construct an ordered L-structure \mathbf{C}_{ℓ} as a structure satisfying the following:
(1) The vertex set of \mathbf{C}_{ℓ} is $C_{\ell}=\Sigma^{\ell}$,
(2) $\leq \mathrm{c}_{\ell}$ is the lexicographic ordering of Σ^{ℓ},
(3) whenever $\left(w^{0}, w^{1}, \ldots, w^{k-1}\right) \in \Sigma^{\ell}$ is compatible and decides structure on some level i then $B \upharpoonright_{\left\{w^{0}, w^{1}, \ldots, w^{k-1}\right\}}$ is isomorphic to $B \upharpoonright_{\left\{w_{i}^{0}, w_{i}^{1}, \ldots, w_{i}^{k-1}\right\}}$.

Abramson-Harrington theorem

Proof step 3: Building $(\mathcal{S}, \mathcal{M})$-tree.
Define successors by concatenation.
Let \mathcal{M} denote the set of all shape-preserving functions $F: \Sigma^{<\omega} \rightarrow \Sigma^{<\omega}$ satisfying for every $\ell \in \omega$ and every lexicographically increasing sequence \bar{w} of elements of Σ^{ℓ} the following two properties:
(1) if $F(\bar{w})$ decides structure on level i then $i \in \tilde{F}[\omega]$.
(2) if $F(\bar{w})$ become inconsistent on level i^{\prime} then $i^{\prime} \in \tilde{F}[\omega]$.

Abramson-Harrington theorem

Proof step 3: Building (\mathcal{S}, \mathcal{M})-tree.

Define successors by concatenation.
Let \mathcal{M} denote the set of all shape-preserving functions $F: \Sigma^{<\omega} \rightarrow \Sigma^{<\omega}$ satisfying for every $\ell \in \omega$ and every lexicographically increasing sequence \bar{w} of elements of Σ^{ℓ} the following two properties:
(1) if $F(\bar{w})$ decides structure on level i then $i \in \tilde{F}[\omega]$.
(2) if $F(\bar{w})$ become inconsistent on level i^{\prime} then $i^{\prime} \in \tilde{F}[\omega]$.

Let N by given by our theorem for $(\mathcal{S}, \mathcal{M})$-tree, $2^{|A|}-1$ and $2^{|B|}-1$. Then

$$
\mathbf{C}_{\ell} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}
$$

$A C$| 0 | $\varphi(0)=$ |
| :--- | :--- | | 0 | 1 | 2 |
| :--- | :--- | :--- |
| 0 | n | 0 |
| 1 | $\varphi(1)$ | $=\mathrm{n}$ |
| 0 | 0 | 1 |

Abramson-Harrington theorem

Proof step 3: Building (\mathcal{S}, \mathcal{M})-tree.

Define successors by concatenation.
Let \mathcal{M} denote the set of all shape-preserving functions $F: \Sigma^{<\omega} \rightarrow \Sigma^{<\omega}$ satisfying for every $\ell \in \omega$ and every lexicographically increasing sequence \bar{w} of elements of Σ^{ℓ} the following two properties:
(1) if $F(\bar{w})$ decides structure on level i then $i \in \tilde{F}[\omega]$.
(2) if $F(\bar{w})$ become inconsistent on level i^{\prime} then $i^{\prime} \in \tilde{F}[\omega]$.

Let N by given by our theorem for $(\mathcal{S}, \mathcal{M})$-tree, $2^{|A|}-1$ and $2^{|B|}-1$. Then

$$
\mathbf{C}_{\ell} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}
$$

Abramson-Harrington theorem

Proof step 3: Building (\mathcal{S}, \mathcal{M})-tree.

Define successors by concatenation.
Let \mathcal{M} denote the set of all shape-preserving functions $F: \Sigma^{<\omega} \rightarrow \Sigma^{<\omega}$ satisfying for every $\ell \in \omega$ and every lexicographically increasing sequence \bar{w} of elements of Σ^{ℓ} the following two properties:
(1) if $F(\bar{w})$ decides structure on level i then $i \in \tilde{F}[\omega]$.
(2) if $F(\bar{w})$ become inconsistent on level i^{\prime} then $i^{\prime} \in \tilde{F}[\omega]$.

Let N by given by our theorem for $(\mathcal{S}, \mathcal{M})$-tree, $2^{|A|}-1$ and $2^{|B|}-1$. Then

$$
\mathbf{C}_{\ell} \longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}
$$

Thank you for the attention

- F. Galvin: Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968). Errata in Notices Amer. Math. Soc. 16 (1969).
- D. Devlin: Some partition theorems and ultrafilters on ω, PhD thesis, Dartmouth College, 1979.
- N. Sauer: Coloring subgraphs of the Rado graph, Combinatorica 26 (2) (2006), 231-253.
- N. Dobrinen, The Ramsey theory of the universal homogeneous triangle-free graph, Journal of Mathematical Logic 2020.
- A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.
- A. Zucker. On big Ramsey degrees for binary free amalgamation classes. Advances in Mathematics, 408 (2022), 108585. 25 pages.
- M. Balko, D. Chodounský, J.H., M. Konečný, L. Vena: Big Ramsey degrees of 3-uniform hypergraphs are finite, Combinatorica (2022).
- J.H.: Big Ramsey degrees using parameter spaces, arXiv:2010.00967 (2020).
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, L. Vena, A. Zucker: Exact big Ramsey degrees for finitely constrained binary free amalgamation classes, arXiv:2110.08409 (2021).
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, L. Vena, A. Zucker: Big Ramsey degrees of the generic partial order, arXiv:2303.10088 (2023).
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, A. Zucker: Ramsey theorem for trees with successor operation, arXiv:2311.06872 (2023).

